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Abstract 

Nonequilibrium spatially distributed chemically reacting systems are usually described 
in terms of reaction-diffusion equations. In this article, a hierarchy of discrete models 
is studied that show similar spatio-temporal structure and can be used to explore the 
complex phenomena occurring in these systems. We consider cellular automaton fnodels 
where space, time and chemical concentrations are discrete and the dynamics is embodied 
in a simple updating rule, coupled map lattices where space and time are discrete variables 
but chemical concentrations are continuous and the dynamics is given by a nonlinear 
function and, lastly, lattice gas cellular automaton models that view the system on a 
microscopic or mesoscopic level where space, time and particle velocities are discrete. 

1. Introduction 

In the macroscopic regime, the spatio-temporal dynamics of chemically reacting 
systems is described by reaction-diffusion equations of the general form 

Oc(r, t) 
- R ( c ( r , t ) ) + D .  V2c(r,t),  (1.1) 

3t 

where c(r, t) is a vector of local concentration variables, R is a vector-valued function 
that describes local chemical reactions, and the last term accounts for diffusion of the 
chemical species. In the far-from-equilibrium domain which will concern us here, the 
reaction-diffusion equation can describe a rich variety of bifurcation structures that 
occur in macroscopic reacting systems. These include multi-staNe states, oscillations, 
chemical waves and chemical chaos [1]. 

Most examples of the reaction-diffusion systems studied in this paper actually 
fall into three variants of (1.1). There are propagator-controller systems [2] that consitute 
a generic model of excitable media, the time-dependent Ginzburg-Landau model for a 
system with a non-conserved order parameter (model A) [3] that describes a class of 
chemical reactions which possess bistable steady states and, finally, the complex Ginzburg- 
Landau model [4,5] which can be used to study the onset of oscillations that arise from 
the Hopf bifurcation of a steady state. Much of the discussion in the subsequent sections 
will center on the phenomena embodied in these general equations, but other models will 
also be considered. 
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The subject of  this review is the description of spatio-temporal structures in terms 
of even simpler discrete models of spatially-distributed chemically reacting systems. We 
consider a hierarchy of discrete models. At the simplest level are cellular automaton 
models where space, time and chemical concentrations are discrete and the reactive and 
diffusive dynamics are represented schematically by a rule for updating these discrete 
variables. Next in complexity are coupled map lattices where the space and time variables 
are discrete but concentrations may take on a continuum of values. Both of these models 
are abstractions of the reaction-diffusion equation (1.1). Lastly, we study a class of 
stochastic discrete models that treat the system at the molecular level (or perhaps, more 
accurately, at the mesoscopic level). These are lattice gas cellular automata where space, 
time and particle velocities are taken to be discrete variables. This last class of models 
has the added feature that fluctuations are incorporated, albeit in an approximate fashion, 
so that a description that goes beyond the reaction-diffusion equation is possible. 

Since all of these models approximate the dynamics in some way, not all details 
of  chemical pattern formation processes can be faithfully reproduced. Hence, the goal 
of such descriptions is to model the robust features of the spatio-temporal dynamics by 
simple, computationally efficient schemes that provide insight into the essential aspects 
of such nonlinear reacting systems. 

A word about notation is in order: in this review, the notation ira each major 
section is internally consistent but there may be duplication of symbols when different 
sections are compared. Since certain notation is standard in different fields of research, 
this compromise avoids the introduction of unusual symbols. 

2. Cellular automaton models 

Cellular automaton (CA) models for complex dynamical systems were devised by 
Von Neumann and Ulam in an attempt to construct a self-reproducing system that 
mimics biological evolution [6]. Recently, there has been a revival of interest in such 
models. 

A cellular automaton model for a dynamical system can be constructed according 
to the following prescription. The dynamics is assumed to take place on an array of cells. 
Each cell can take on a finite number n of values in the set S = {sin; m = 1 . . . . . .  n}. 
Dynamical evolution occurs according to a rule R that specifies how each cell changes 
its value from one discrete time to the next; in general, the upating rule depends on the 
value of s,,, in the given cell as well as that of  neighboring cells. The mAe R may be 
deterministic or probabilistic in character. This seemingly simple set of  operations can 
give rise to very complicated dynamics; in fact, it can be shown that rules can be 
constructed that are capable of universal computation; they are Turing machines. 

The self-reproducing CA of Von Neumann was very complicated, consisting of 
twenty-nine states with complex updating rules, but simpler self-reproducing CA models 
have been constructed. For example, Codd has devised a simple eight-state automaton 
that accomplishes self-reproduction [7]. Recent activity has focused, for example, on the 
classification of cellular automaton rules according to the types of dynamics they produce, 
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their connection with formal language theory and statistical mechanics, etc. [8], which 
has helped to organize the study of such systems. In addition, there has been a wealth 
of applications of these models to problems in biology, physics and chemistry. Much 
of this recent activity stems from developments in computers which make simulations 
of such systems feasible and from advances in the field of nonlinear dynamics [9]. 

The focus of this section is not on such general aspects of CA models; rather, we 
consider how specific features of a certain class of chemically reacting systems can be 
described in terms of simple cellular automata. We first consider chemical systems that 
are excitable; i.e. they possess a stable resting state which exhibits the following response 
to perturbations: a small displacement from the resting state will relax directly back to 
that state, but if the magnitude of the perturbation exceeds some threshold value, the 
system will make a large excursion in phase space before returning to the resting state. 
During this excursion, the system is insensitive to further perturbation, i.e. refractor3,. 
Following this discussion of excitable media, we briefly describe the application of CA 
models to other types of reacting systems. 

For an excitable system, the local dynamics is conveniently discussed in terms 
of the kinetics of two chemical concentrations u and v which satisfy the coupled rate 
laws [2] 

du dv 
T--d- [ = f ( u , v ) ,  d---[ = g (u , v ) ,  (2.1) 

where ~'is assumed to be small and fand  g are functions with the general shapes sketched 
in fig. 1. The function f has a sigmoidal shape, while g has no extrema and intersects f 
as shown in the figure, giving rise to a stable fixed point. Often-used functional forms 
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Fig. 1. Sketch of the t~ = 0 and ~ = 0 nullclines for an excitable 
system. The heavy dot indicates the stable fixed point and 
the arrows give the direction of the flow of the vector field. 
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with these general prolmrties are f (u, v )  = - u  3 + e u  - v and g(u ,  v )  = u - a v  + b. T h e  

flow of  the vector field is as indicated in the figure. If the system is at the fixed point, 
it is stable to small perturbations; however, if the perturbation is sufficient to excite the 
phase point above the middle branch of the u = 0 nullcline, then the system will execute 
a long excursion following the upper and lower branches of this nullcline except for the 
regions where it hops between branches. The time scale of the dynamics is governed by 
the parameter ~: so that for small ~:, u is a fast (propagator) variable while v is a slow 
(controller) variable. These are the main features of excitable kinetics which arise from 
the interplay of the two chemical species coupled by the reaction term with the characteristics 
described above. The spatially distributed version of a system with such local excitable 
kinetics constitutes an excitable medium and the propagator-controller equations for the 
medium are: 

r -77-au(r' t) = f ( u ( r ,  t), v ( r ,  t ) )  + D ,  V2u(r, t), 

3v (r, t) 
a t  - g ( u ( r ' t ) ' v ( r ' t ) ) + D v V 2 v ( r ' t ) "  (2.2) 

There exist excellent reviews [2,10,11] and books [12] dealing with the properties of 
such systems. In the following subsections, we describe how the general features of this 
kind of dynamics can be captured by even simpler discrete models. The strategy is to 
replace the real concentration field (u, v)  by a discrete variable or variables with local 
kinetics characteri~ic of excitability and coupling among these local discrete variables 
that accounts for the effects of diffusion. 

2.1. SIMPLE EXCITABLE MEDIUM CA 

First, a very simple CA model will be described that mimics the behavior of 
excitable media. Very roughly, the dynamical state of a system that satifies the rate 
law (2.1) can be classified as either resting (quiescent) Q, excited E, or refractory R. This 
crude classification can form the basis for a cellular automaton model of the dynamics. 
In fact, some of the earliest work on cellular automata has recognized and used this 
classification of states for the construction of the CA rules [6, 13]. In the simplest CA 
models, the state of the system is represented by a single notional discrete concentration 
variable that can take on values corresponding to the above classification. Naturally, at 
this level of description any direct relation to the real concentration fields is lost. 

In this simplest version of the excitable medium CA, the state space S is taken 
to be composed of the three states S = {Q, R, E} and the cells occupy the nodes of a 
d-dimensional simple cubic lattice labeled by an index i = (i 1, i 2 . . . . .  id), i k ~ Z . T h e  

excitable medium updating rule Rem is constructed to mimic the dynamics of the real 
system. Consider a cell isolated from interaction with its neighbors. If it is in the state 
Q, it will remain there since Q is the resting state. If the cell is excited, then in the two 
subsequent time steps it will become refractory and quiescent, E --+ R --+ Q, since an 
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excited system will retum to the resting state. Let j ~ N,  where N i s  a set of nodes 
defining the neighborhood of a given cell i. Diffusive interactions and excitability are 
taken into account by requiring the state of a cell i to depend on that of its neigh- 
bors j. If a cell is in Q and any of its nearest rmighbors are in E, then the cell will become 
E in the next time step. If the cell is in R, then it is refractory and is unaffected by the 
state values of its neighbors. Thus, if we let s(i, t) label the state of cell i at time t, we 
have the following deterministic updating rule: 

~.~m : s(i, t+ 1) = 

E if s( i , t )  = Q and s ( j , t )  = E, 

R if s( i , t )  = E, 

Q i f s ( i , t ) = R  o r s ( i , t ) = Q  and s ( j , t )  e { Q , R } .  

(2.1.1) 

This very simple nile can reproduce many of the general features of chemical 
wave propagation in excitable systems. Three general types of chemical waves are 
observed in two-dimensional excitable media. Rings of excitation can be produced by 
a localized perturbation in a quiescent medium. The excitation will propagate outward 
at constant velocity as the perturbation excites the unperturbed surrounding medium. The 
refractory tail prevents back-propagation of the excitation, giving rise to a ring with 
increasing diameter whose thickness is determined by the length of the refractory period 
(one lattice site in this simplest model). If a periodic perturbation is applied locally 
(pacemaker), then target patterns may be formed by subsequent excitation of the quiescent 
medium within the rings of excitation. Provided the recovery time of the medium is short 
compared to the period of excitation, the frequency of the chemical waves in the target 
patterns will be that of the pacemaker. Perhaps the most interesting chemical waves that 
form in such media are spiral waves. Experimentally, these can be produced by tilting 
a dish of chemical reagent that supports rings or target patterns; shearing them produces 
lines of excitation whose free ends form the cores of spiral waves [14]. Alternatively, 
inhomogeneities intrinsic to the medium can provide a mechanism for the fragmentation 
of rings and subsequent formation and break-up of spiral waves. For example, see 
refs. [13,15-18]. 

Consideration of the evolution of the excitable medium CA shows that an initial 
condition corresponding to an excited cell in a sea of quiescent cells will evolve to an 
expanding "ring" of excitation, but with the geometry of the underlying lattice (fig. 2(a)). 
This feature precludes the study of phenomena that depend on the curvature of the spatial 
pattern. We shall return to this point later in the discussion of more complex excitable 
medium CA models and coupled map lattices. If the ring is sheared, the free ends curl 
around to form a pair of counter-rotating spiral waves, just as in a real excitable medium. 
The spiral geometry arises from the fact that a line of excited cells is "protected" on one 
side by a line of refractory cells, forcing the excitation to wind around the free end. This 
is the discrete analog of the corresponding process that occurs in reaction-diffusion 
models [10, 11,19-23]. The evolution of a spiral wave from a line-like initial condition 
is shown in fig. 2(b) and an example of the evolution that results from broken "rings" 
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Fig. 2. Excitable medium CA wave propagation: 
(a) ring; (b) spiral wave; (c) "target" pattern. 

is shown in fig. 3. Note again that the spiral wave assumes a geometry consistent with 
the underlying lattice. The core of the spiral wave is pinned to a given location in the 
lattice and consists of  the cycling configuration of cells shown in fig. 4; hence, the spiral 
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Fig. 3. Formation of spiral waves in the excitable medium 
CA following the shearing of "rings" of excitation. 

i m  

I l 
Fig. 4. Cycfing configuration of cells at the 
"core" of the excitable medium CA spiral. 

core is a highly simplified version of  the complex concentration gradients that are 
known to occur there. As a result of this simplified description, those properties that 
depend on the details of the nature of the chemical gradients in the core [24] or the 
motion [14,25-29]  of the core are outside the scope of such a model. Finally, starting 
from an initial configuration consisting of an excited cell adjacent to a refractory cell 
in a quiescent medium, structures r em~scen t  of target pattems can be generated 
(fig. 2(c)). However, since the initial configuration is just that of the spiral core, these 
chemical waves are really a pair of spiral waves that have coalesced and the re-excitation 
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mechanism to form the pattern is presumably different from that in systems where an 
autonomous pacemaker arises from a local inhomogeneity or some other mechanism. 

In three dimensions, new types of chemical waves appear [ 11,30] and the excitable 
medium CA [31] has been used to investigate various problems, such as the initial 
conditions that can give rise to these waves, in an effort to determine how such waves 
can be produced in the laboratory. 

The existence of the cyclic configuration of  cells shown in fig. 4 is the key to 
understanding the asymptotic dynamics of this three-state automaton starting from 
random initial conditions in two dimensions. These configurations form the "nuclei" of 
periodic structures that govern the eventual dynamics of the system which consists of 
a random distribution of competing centers of periodic structures. Some aspects of 
continuous random initial seeding and the dynamical evolution on fractals have been 
studied for the three-state automaton, and demonstrate the additional complexities that 
arise for such initial states [32]. We shall comment further on random initial conditions 
in section 2.2. 

While the evolution from random initial conditions containing all types of sites 
is quite complicated, if the initial state is taken to be a random distribution of  excited 
cells in a quiescent medium, the evolution can be described quite simply. This case is 
not without interest, since many nucleation and growth processes evolve from this type 
of  initial state. Also, many problems related to pattem formation processes in such media 
have a statistical character and their investigation entails averages over many realizations 
of the evolution process. In such circumstances, provided one is interested in gross 
aspects of the dynamics, these simple CA models can provide insight into the understanding 
of  these more complicated problems. Below, we give an illustration of such an analysis 
and also relate certain aspects of chemical wave propagation in excitable media to 
percolation problems, a connection which may be useful in some circumstances. 

Consider the CA evolution from an initial state where each cell independent of  
its neighbors is excited (assigned the value E)  with probability p or quiescent (assigned 
the value Q) with probability 1 - p [33]. The E cells will form random clusters in the 
sea of quiescent cells and one can consider properties related to these clusters like their 
average size and distribution, just as in percolation theory [34]. Since E cells will excite 
their quiescent neighbors in subsequent time steps, we actually have a dynamical version 
of the percolation problem to consider. Below, we review a number of aspects of this 
behavior and show how it provides insight into features that arise in the evolution of  
chemical waves. 

Depending on the value o fp  and the definition of the neighborhood N ,  either the E 
cells or the Q cells (or both) will belong to a percolating cluster. To be specific, consider 
the Moore neighborhood consisting of the eight neighbors of a site so that the CA is 
defined on a square-matching lattice. On this lattice, the critical percolation proba- 
bility [34] for E cells is Pc = 0.407, so for p < pc the E cells do not percolate 
but the Q cells do; also, by symmetry, for p > 1 - P c  = 0.593 the Q cells do not 
percolate but the E cells do. Hence, for 0.407 < p < 0.593, both E and Q cells belong 
to percolating clusters. 
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Cellular.automaton evolution gives rise to a dynamical version of this problem 
[33]. As described above, an isolated E cell in a quiescent medium will spawn a ring 
(square) of  8t excited cells at time t (t > 0) whose interior is protected by a ring of 
8 ( t -  1) ( t> 1) refractory R cells. Thus, if p <Pc at t=  0 so that E cells do not percolate, 
they may form part of  a percolating cluster at some later time. A percolating cluster of  
excited cells at t = 2 is shown in fig. 5. A complication arises since the rings of 

Fig. 5. A percolating cluster of excited cells at t = 2. 
The critical percolation probability is pc(t = 2) = 0.41528 
(cf. ref. [33]). 

excitation will collide and portions of the wavefronts will be annihilated. Alternatively, 
one may imagine that independently growing rings of excitation cover an area corresponding 
to a set of  growing squares which in general overlap. We denote the area covered by 
these growing squares the transformed area and the E cells form the perimeter of  this 
area. In the dynamical percolation problem, one quantity of interest is Pc(t), the value 
of the initial seeding probability which gives rise to E cell percolation at time t. From 
the above description of the evolution, it is clear that the dynamical percolation problem 
is isomorphic to that of  the percolation of a set of  squares with sides 2t + 1 (circles in 
the real system) [33, 35]. Thus, a number of aspects of the dynamics of chemical wave 
formation in excitable media can be analyzed in terms of the language familiar from 
percolation theory. Additional scaling relations may be derived and questions related to 
the fractal dimensions of the growing patterns can be addressed easily for the automaton 
model [33]. 
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The average transformed area (or volume) fraction n(t)  may also be easily computed 
for the CA with this type of initial seeding. In view of the independent random seeding 
process giving rise to the initial configuration and the deterministic nature of  the growth 
process, the following argument may be used to determine n(t)  for a d-dimensional lattice 
[36]. An initially quiescent cell will become excited within the time t only if it lies within 
a volume (2t + 1) a surrounding an initially excited cell; the excited cell will produce a 
shell of excitation which covers this volume in a time t, so will certainly excite any cell 
lying within it. Since the probability that a randomly chosen cell is excited at t = 0 is p, 
the probability that a randomly chosen cell is untransformed (remains quiescent) at time t 
is (1 - p)(2t+ 1)~t. Hence, the average fraction transformed at time t is 

n( t )  = 1 - (1 - p)(2t+ l)a (2.1.2) 

Since the excited cells constitute the surface of  the transformed volume, the average 
fraction of  the system which is excited at time t is just 

n( t )  - n ( t  - 1) = (1 - p)(2,-l)a _ (1 - p)(2,+ 1) a (2.1.3) 

This formula provides an exact result for the average number of excited cells in the 
system at time t or, in other terms, the average fraction of the excitable medium covered 
by wavefronts at time t. 

Equation (2.1.3) is the discrete analog of the Johnson-Mehl-Avrami  (JMA) [37] 
formula derived earlier in the study of nucleation and growth processes; clearly, the 
chemical wave propagation process may be considered from this point of  view. For the 
type of  random initial state described above, the JMA result is easily derived for disc 
(in 2-d) or spherical (in 3-d) wave propagation with constant velocity v in a continuous 
medium. The transformed volume fraction at time t is 

n( t )  = 1 - e-pVatd, (2.1.4) 

where V 2 = zcv 2 and V 3 = 4nv3/3, while the fraction of the system in the excited state Se( t )  
is just the perimeter (surface) of the average transformed area (volume) 

Se( t )  = h( t )  = pdVata- le -pVata .  (2.1.5) 

Since wavefronts in excitable media are often characterized b y  sharp concentration 
gradients, Se( t )  can be measured in real systems by optical means. 

It is also possible to generalize the CA model to allow for finite system size effects 
and effects due to inhomogeneous initial seeding. This allows a broader class of  nucleation 
growth processes to be studied [38]. 
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2.2. EXCITABLE MEDIUM CA: VARIATIONS ON THE THEME 

The three-state excitable medium CA described above is perhaps the simplest 
model of  a general class of  excitable medium CA models. The apparently straight- 
foward generalization of  this excitable medium CA to situations where E is a set 
of  k excited states, E = {E1,E 2 . . . . .  Ek} and R stands for a set of  l refractory 
states, R = {R 1 . . . . .  Rt} produces amazingly rich behavior for evolution from random 
initial states [39]. The CA rule can be constructed as follows: suppose there are a total 
of  n states, often referred to as "colors", in the automaton. We may label the states of 
the automaton by n integers, {Q, E l, E 2 . . . . .  E~, R 1, R 2 . . . . .  Rl} = {0, 1, 2 . . . . .  n - 1}. 
The number k can serve as a generalization of  the simple threshold in the three- 
state automaton. If the state of  a cell i at time t is s(i, t )= m, m > k, it will become 
s(i, t) + 1 (mod n) at the next time step regardless of the state of  its neighbors. However, 
ifs(i ,  t) = m, m < k, then the updating depends on its neighbors; it will change to m + 1 
only if one of its neighbors is in m + 1. More formally, the CA rule is: 

s ( i , t +  1) = I ( s ( i , t )+  1)mod n 

L s(i ,  t) 

if s( i , t )  > k or ( s ( i , t )+  1)mod n = s ( j , t ) ,  

(2.2.1)  
otherwise, 

where, as usual, j ~ N .  The CA rule is thus a function of  the number of states n, the 
threshold k, as well as the neighborhood N.  This model is often called the 
Greenberg-Hastings (GH) model [40]. It has been thoroughly studied by Fisch, Gravner 
and Griffeath [39]. They have examined the ergodic properties of the model in 1-d and 
have given a discussion of the conditions necessary for the formation of  persistent 
patterns in 2-d. The model is able to produce a wide-range dynamical behavior, only 
some of which is analogous to that found in real excitable media. These studies can 
provide the theoretical underpinning of the dynamics of  all the excitable medium CA 
models described here. 

A related class of cyclic CA models has also been investigated and accounts of  
their properties have been given by Griffeath [41]. Such models may also have relevance 
for excitable chemical media. 

In addition to these general but abstract versions of the excitable medium CA, 
there has been a number of  studies that have considered more complex versions of  the 
excitable medium CA model in order to study specific applications to chemically reacting 
media. As noted above, one of  the main defects of the simple three-state model is the 
fact that chemical waves reflect the geometry of  the underlying lattice. This precludes 
the investigation of  phenomena which for their existence depend on the curvature of  the 
wavefront. The nature of the pattern formation and growth in real excitable media often 
involves a delicate interplay between the nonlinear kinetics and the curvature effects that 
arise from the diffusion term in the reaction-diffusion equation [10, 11, 19-23].  We now 
describe how the excitable medium CA model has been generalized to incorporate wave 
curvature and wave dispersion. 
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Markus and Hess [42] have carried out detailed studies of  wave propa- 
gation in an excitaNe medium CA model that incorporates both curvature and dispersion 
effects. The model has elements which are like those described above, but there is an 
essential difference in the way sites are placed on the lattice and the neighborhood is 
determined. The state space is the same as above for the GH model: there are n 
states S = {0, 1 . . . . .  n - 1 }, with 0 the resting state and a threshold for excitability k. 
Consider two space dimensions. The simple square lattice L is taken to be composed 
of N squares with sides of  length q. Rather than occupying the nodes of  the square lattice, 
the CA cells are now located at random positions within each square of L,  one CA cell 
per square of  L. We again label the CA cells by i. The neighborhood N of a cell i is 
defined as follows: a circle with radius r is centered at the position of each CA cell and 
the number of CA cells v(i)  that fall within this circle consitute the neighborhood N of 
cell i. Given this disposition of CA cells, the updating rule is easily written once an 
intermediate variable or(i, t) is computed as 

0 

cr( i , t )= s ( i , t ) -  I 

n - 1  

if s(i,  t) = 0 and ve (i) < mo + bs(i ,  t), 

if 0 < s( i , t )  < k and re(i)  < mo + bs( i , t )  or s( i , t )  > k, 

if s(i,  t) <_ k and Ve (i) > mo + bs(i ,  t), (2.2.2) 

where ~( i )  is the number of excited cells in N .  The updating rule is 

or(i, t) 
s ( i , t +  1) = [ (a( i ,  t))]l 

where 

if a( i , t )  = 0, 1, n -  1, 

if 1 < o ( i , t ) < n - 1 ,  
(2 .2 .3)  

(or(i)) = v(i) -1 ~ or(j)  (2 .2 .4)  
j ~ N  

and [ • • • ]1 refers to the next integer. The randomization of the CA cell location on the 
lattice L removes the dependence of  the waveform on the underlying lattice geometry; 
the chemical waves appear to be circular or spherical (in 3-d), so that curvature effects 
can be studied. In order to account for dispersion, so that the wave velocity depends on 
the period, it is important to include excitability of some of the refractory states. The 
threshold for this excitability is given phenomenologically in terms of  tile linear form 
m o + bs(i, t). The incorporation of  these features increases the complexity of the model, 
which now depends on the parameters r/q, n, k, b and m o. In spite of the increased complexity, 
the model is computationally orders of  magnitude more efficient than direct simulation 
of the reaction-diffusion equation and reproduces the correct qualitative forms and some 
quantitative features of  the chemical waves. 

Another version of the excitable medium CA model was studied by Gerhardt, 
Schuster and Tyson [43]. This model takes the phase plane structure of  the propagator- 
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controller excitable kinectics more seriously and introduces tw o  variables to code the 
state of  each cell. The state o f  a cell is coded by a variable s = (u, v)  which takes the 
2m values {s = (U, v ) : u  = 0, 1; v = 0 . . . . .  m - 1}. As in the excitable medium models 
described earlier, the states are classified as quiescent Q = (0, 0), refractory R = {s = (0, v); 
v = 1 . . . . .  m - 1 }, or excited E = {s = (1, v);  v = 0 . . . . .  m - 1 }. Furthermore, it is 

convenient to subdivide the refractory and excited states into two groups: let R = {R', R "  }, 
where R '  = {s = (0, v);  v = 1 . . . . .  k} is a set of  k relatively refractory states which 
may be excited if a sufficiently large number o f  neighboring cells is excited and 
R "  = {s = (0, v);  v = k + 1 . . . . .  m - 1} is a set o f m  - k -  1 absolutely refractory states 
which may not be excited regardless of  the states of  neighboring cells. Similarly, we let 
E = {E', E "  }, where E '  = {s = (1, v); v = 0 . . . . .  l - 1 } is a set o f  I states which are 
unaffected by the states of  neighboring cells and E "  = {s = (1, v);  v = l . . . . .  m - 1 } is 
a set of  m - 1 excited states which may jump prematurely to recovering states if surrounded 
by a sufficiently large number  of  quiescent or recovering states. 

Given this classification o f  states, the CA rule is simply an elaboration~of the usual 
excitable medium CA rule: in the absence of  any interactions with neighboring cells, i f  
the system is in the Q state it will remain there, if  it is excited it will cycle through the 
excited and refractory states and return to the Q state. In addition, cells may  be excited 
or de-excited depending on the states o f  neighboring cells. The  CA rule is: 

I 
( 1 , 0 )  if  s(i,  

(0, m - l )  ifs(i ,  
(1, v ') i f  s(i,  

s ( i , t +  l ) =  (O ,v ( i , t ) )  i f s ( i ,  

( 1 , v  ( i , t ) )  if  s(i,  

(0, v ") if  s(i,  

t) = ( 0 , 0 )  and v~(i) > n~, 

t) = ( 1 , m -  1), 

t) ~ E '  or s( i , t )  ~ E " / ( 1 , m -  1) and v~(i) < n~, 

t) ~ E " / ( 1 , m -  1) and vr(i)  > nr ,  

t) ~ R" and ve(i) > he, 

t) E R"  or s(i,  t) ~ R '  and re(i)  < he. (2.2.5) 

In this equation, vr(i) is the number of  quiescent or refractory cells in a neighborhood N 

of  cell i and v~(i) is the number  o f  excited cells in N .  The threshold numbers o f  quiescent 
or refractory and excited cells, n r and n e ,  respectively, are taken to be functions o f  the 
extent o f  recovery or excitation in the simulations. Selecting the neighborhood N to be 
a square o f  cells with sides of  length 2 r + 1, the forms of  B and n e are: 

o E,.(2r+,)_n-I[ 7---m+i ]' nr(V) = n r + 0 V - -m  + 1 

0 [ r ( 2 r +  1 ) - n ~ ]  ~ - .  ne(V) = n e + 0 v ( 2 . 2 . 6 )  

In general, the system may pass through the excited and refractory states at different 
rates, so v '  and v "  are defined as follows: 
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v '  = min(v(i, t) + v u, m - 1), v"  = (v(i, t) - v a, 0), (2.2.7) 

where v u is the rate at which v increases in the E manifold, while 73 d is the rate at which v 
decreases in the R manifold. These features can model the dispersion of  the wave velocity, 
as discussed above. This model has the attractive feature that the CA states are more 
directly related to the propagator-controller concentrations than CA models involving 
a single scalar set of states. 

Both of the above CA rules are elaborations of the simple excitable medium 
automaton model designed to account for features that are absent in the original rule, 
in particular the dispersion of  the wave velocity or curvature effects. These features are 
crucial for the proper description of a variety of spatio-temporal dynamics in excitable 
(and oscillator),) media. 

Other generalizations of the excitable medium CA have been used in different 
contexts, e.g. to study spiral galaxy formation and parallels to chemical wave propagation 
processes have been noted [4411. 

2.3. INHOMOGENEOUS EXCITABLE MEDIUM CA 

A variant of  this CA rule that introduces an additional probabilistic element has 
been used to model excitable medium dynamics in spatially inhomogeneous systems. 
We consider one such version, which has been used in a number of  applications to 
biological systems where the inhomogeneous nature of  the medium plays an important 
role in the wave propagation processes. Cardiac and nerve tissues are prime examples 
of excitable media, where the "reaction-diffusion" equation describes the coupled dynamics 
of the membrane potential and currents of  ions such as K +, Na +, Ca ++, etc. [45]. 

In the heart, a complex pattern of electrochemical waves is responsible for the 
normal contractions of the heart muscle and disruptions of this pattern can lead to 
fibrillation. It is belived that fibrillation is connected to the appearance and fragmentation 
of spiral waves or their 3-d analogs, scroll waves, in the heart tissue [46,47]. Spiral waves 
can arise either because of the intrinsic inhomogeneity of the excitable medium or from 
the existence of phase singularities created by the excitation process. We should also 
remark that many of the processes that occur in excitable living tissue can be produced 
and studied in a controlled way in chemical excitable media, and the well-known Belousov- 
Zhabotinsky [481 reaction has become a testing ground for such studies [1,46,47]. In 
view of the variety and physiological importance of wave propagation processes in such 
systems, it is not surprising that a considerable amount of work has been done on CA 
models for these systems. In fact, as noted above, some of the earliest CA models were 
applied to the study of the heart [13, 15]. 

The entire heart is a rathercomplicated system to model, and most studies have 
focussed on specific aspects of the conduction process. The wave propagation processes 
in the atrio-ventricular (AV) node are perhaps some of the easiest to study theoretically. 
The AV node is a thin rectangular piece of  tissue through which the excitation in the 
atrium is transmitted to the ventricles [49]. Disruption in the manner in which the 
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electrical waves traverse the AV node can lead to abnormalities in the contractions of 
the ventricles. The waves that pass across the AV node may be delayed or even blocked, 
and it is the nature and origin of  such features that is interesting to investigate. 

An inhomogeneous excitable medium CA has been used to model the AV 
node [50,51]. The simplest version treats the AV node as a 2-d piece of tissue and the 
cells or blocks of cells of the tissue are assumed to lie on the nodes of an L x M 
rectangular lattice. Spatial inhomogeneity is introduced by making the refractory period 
of each cell a random variable. More specifically, the refractory period v(i) of  each cell 
i, independent of that of  its neighbors, is obtained by taking the integer part of  a random 
number drawn from a Gaussian distribution with mean ¥ and width or. Thus, the set of  
states S(i) corresponding to each cell i is in general different and is given by 

S(i)  = {Q, E, R~(i), R~(i) - 1 . . . . .  R1}" (2.3.1) 

The spatial distribution of refractory periods is assigned at the initial time. Subsequent 
evolution of the CA occurs through the deterministic excitable medium CA rule, R .~ ,  
(2.1.1), which is now a function of the specific distribution of refractory times: 

E 

R ~(i) 
s ( i , t +  1) = Rr(i)_k 

Q 

if s(i,  t) = Q and s ( j ,  t) = E, 

if s(i ,  t) = E, 

-1 i f s ( i , t )  = Rz(i)-k (k = 0 . . . . .  " r ( i ) -2 ) ,  

if s(i,  t) = R1. 

(2.3.2) 

The evolution of the automaton has a much more complex history than that of  the 
corresponding homogeneous CA since different parts of the medium will recover at 
different rates as a result of  the dispersion of refractory times. 

This CA model has been used to mimic the wave propagation processes across 
the AV node by periodically exciting the top row of the rectangular lattice and observing 
the timing and nature of the waves of excitation that exit from the bottom of the array. 
Absorbing boundary conditions are assumed at the sides of the lattice. More specifically, 
the simulations are carried out in the following way: a random distribution of refractory 
times is first assigned to the lattice. Given that the system is in the quiescent state, at 
t = 0, with probabilityp each site in the first row of M sites is perturbed to the excited 
state E. The perturbation is periodically applied every T time steps to the first row of 
sites, thereby simulating the periodic impingement of waves of excitation from the 
atrium on the AV node. If a site in the first row is in a refractory state when the excitation 
is applied, it is not excited, so that the effective excitation probability may be less than p 
for the subsequent stimuli. Statistically significant quantities are obtained by averaging 
over different realizations of the excitation process, as well as over different realizations 
of the distribution of refractory times on the lattice. It is in such lengthy averaging 
calculations that the utility of the automaton is manifested. 
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The model exhibits the same characteristic wave propagation features as the real 
AV node. The conduction is considered to be normal if the excitation takes L time steps 
to traverse the array with length L. Depending on the period of excitation T, the average 
refractory period ¥ and its dispersion tr, different types of wave propagation are observed. 
For every excitation, a wave may traverse the array but experience a delay; in addition, 
various types of blocks of the fo rmM:N are possible, where for everyM stimuli, N 
waves are observed to exit from the bottom of the array. Other phenomena with physiological 
analogs are also observed; for example, the Wenkebach process, where waves are 
progressively delayed by longer and longer periods until a block results. These data are 
summarized in the phase diagram of fig. 6, which is a plot of the type of wave propagation 
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Fig. 6. Phase diagram showing the different types of wave propagation 
processes in the AV node model as a function of (T - ~') and ty. 

process versus the quantity (T - ~)  as the abscissa and tr as the ordinate. The figure 
illustrates the rich variety of wave processes that the CA can produce. In addition, the 
details of  the fragmentation of the wave front as it moves across the AV node can be 
studied. In certain parameter regions the formation of circular fronts is observed which 
arise from the inhomogeneous nature of the medium, and an example of the evolution 
of such a wave is shown in fig. 7. Quantitative aspects of some of these phenomena have 
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Fig. 7. An example of circular wave formation in the 
AV node using the inhomogeneous excitable CA model. 

also been described in the context of the CA model [51]. Naturally, this simple model 
suffers from some of the defects of the simple excitable medium CA, but dispersion 
and curvature effects can be included using the generalizations described earlier in 
section 2.2. 

Inhomogeneities can also play a crucial role in the dynamics of excitable chemical 
systems. Recently, experiments have been performed by Maselko, Reckley and Showalter 
on another type of inhomogeneous excitable system: the Belousov-Zhabotinsky reaction 
carried out on a random array of beads [52]. In this case, irregular packing of the spheres 
containing the immobilized catalyst consistutes an inhomogeneous substrate for the 
pattem formation process. Interesting spiral wave formation and break-up dynamics are 
observed as a function of initial reagent concentrations. Excitable medium CA models 
have been constructed to study these processes [53]. The five-state excitable medium CA 
model used in this study incorporates two principal features. Random initial seeding with 
both excited and refractory states gives rise to a collection of spiral centers as described 
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earlier, and inhomogeneity in the medium is taken into account by modifying the CA 
rule in certain local spatial regions so that both quiescent and refractory states may be 
excited by neighboring excited cells. Such a simple model can account for some of the 
features of the complicated wave dynamics seen in the experiments. 

The preceding sections have given only a brief outline of the variety of wave 
propagation processes that occur in excitable media. Since the focus was intentionally 
restricted to the application of discrete models to such systems, no exhaustive review 
of phenomena like the dynamics of waves in media with obstacles, curvature and 
dispersion effects on wave dynamics in two and three dimensions, or spiral core dynamics 
was attempted. New experimental techniques such as the use of the continuously fed 
unstirred reactor [54], the gel reactor [55], and the Couette reactor [56] have opened up 
the possibility of studying chemical wave structure and dynamics in excitable and other 
media with greater control and detail than has hitherto been possible. For example, such 
reactors have t~zn used experimentally to observe [55] Turing bifurcations [57] and 
spiral wave dynamics [27], and have prompted a number of theoretical studies of pattern 
formation processes for these experimental conditions [58]. CA models can contribute 
to the interpretation of such experiments, and most likely there will be a considerable 
amount of activity in this direction in the future. 

2.4. REACTIVE CA MODELS 

Cellular automaton models have been used to describe other types of chemically 
reacting systems, and we mention below a few examples in order to illustrate how such 
models are constructed. 

A variation of the generalized excitable medium CA rule has been used to construct 
cellular automaton models for the surface oxidation of CO 2 catalyzed by Pd crystallites 
in a zeolite matrix [59-61]. The "hodge-podge" machine [61] was devised to investigate 
this problem and illustrates the more complex variations of this type of model. The CA 
model for this system considers states analogous to the {Q, R 1, R E . . . .  R~, E} states defined 
above (called "healthy, infected and ill"), together with a more complex updating rule. 
Coding the elements in the set S as S = {Q, R 1, R 2 . . . . .  R l, E) = {0, 1, 2 . . . . .  l + 1 }, the 
CA rule takes the form: 

I- vo.) -I+V v,<~-I 
k k~ J L k2 J' 

. T ( i )  _ 1 ]" s ( i , t + l ) =  mln { [  ~ l + v , l +  

O, 

for s(i, t) = O, 

for s(i, t) ~ R,  

for s(i, t) = l+ 1. 

(2.4.1) 

In this equation, re(i) is the number of neighbors of i that are in the state E, vr(i) is 
the number of neighbors that are in any of the R states, and T(i) stands for the sum 

T(i) = ~ s ( j , t ) ,  s ( j , t )  e R. (2.4.2) 
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The bracket [ ..  • ] stands for the integer part of its argument and k 1, k 2 and v are integers. 
The integer v determines how rapidly the system runs through the R states. The spatial 
pattems produced by this CA are quite similar to those observed not only in the CO 2 
oxidation problem, but also to those of the BZ reaction. 

A simple CA model for heterogeneous catalysis has been studied by Chopard and 
Droz [62]. A gas mixture composed of atomic A and diatomic B 2 species is supposed 
to be in contact with a surface. The surface is imagined to be divided into cells, each 
of which can adsorb one atom. The B 2 molecule must dissociate before it can be adsorbed; 
thus, if a B 2 molecule approaches an empty cell it will dissociate and be adsorbed only 
if there is an empty cell adjacent to the original cell. Finally, if two neighboring cells 
are occupied by different species they may react to form a product which is desorbed. 
The chemical mechanism corresponding to the above is 

A --~ A(ads), B 2 -~ 2B(ads), 

A(ads) + B(ads) ---) AB(desorb). (2.4.3) 

The gas above the surface is continuously renewed and the adsorption probabilities are 
assumed to be proportional to the mole fractions of the given species (x a for A and 
1 - x a for B2). 

A simple CA rule that describes such kinetics can be constructed as follows. The 
cells of the surface are the CA cells; each cell can exist in any of four states: S = {0, A, B, C }. 
Here, 0 is the empty cell, A and B are states of cells occupied by A and B species, respectively, 
while the state C accounts for the conditional occupancy by B: it will become 0 or B, 
depending on the states of its neighbors. Using these simple physical ideas the following 
CA model can be written to describe the dynamical evolution of the system: 

s ( i , t +  1) = 

0 i f s ( i , t ) = A  and s ( j , t ) = B  or 

s(i ,  t) = B and s ( j ,  t) = A or 

s( i ,  t) = C and s ( j ,  t) = C; 

A i f s ( i , t ) = A  and s ( j , t ) ~ B  or 

with prob XA if s(i ,  t) = 0; 

B i f s ( i , t ) = B  and s ( j , t ) ~ A  or 

C 

s ( i , t )  = C and s ( j , t ) =  C; 

with prob 1 - x A if s(i ,  t) = O. 

(2.4.4) 

This crude model can show very interesting kinetics and in fact exhibits a nonequilibfium 
surface phase transition whose critical properties can be studied. 

There is a large variety of models that can be constructed along similar lines; for 
example, CA models have been used to study diffusion controlled reactions [63, 64] and 
reversible versions of the GH models have been studied in some detail [65]. Additional 
references to such work can be found in the above-mentioned papers, and we shall not 
provide other examples here. 
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3. Coupled map lattices 

Coupled map lattices (CML) constitute a general class of dynamical systems 
where space and time are discrete but the dynamical variables take on a continuum of 
values [66-68]. Like the cellular automaton models discussed in the previous section, 
space is discretized by placing the system on a d-dimensional lattice. In a coupled map 
model, the CA updating rule is replaced by a nonlinear function that describes both the 
local dynamics of each cell as well as the coupling among cells. If we let c(i, t) represent 
a vector of local dynamical variables at discrete time t (these are chemical concentrations 
in our case), the general form of the evolution equation for a coupled map lattice is 

c(i, t + 1) = f ( c ( i ,  t)) + C(c( j ,  t)), (3.1) 

where i again labels lattice sites or cells and j ~ N labels cells neighboring i. The func- 
tion f specifies the local dynamics of a cell, while C accounts for the coupling of cell i 
to its neighbors. 

Most often, the coupling term C is taken to be a discrete version of the Laplacian, 
either in its backward difference form so that 

c(i,t+ 1)=f(c(i,t))+ y £ (c(j,t)-c(i,t)), 
j ~ N  

or in its forward difference form so that 

(3.2) 

c(i, t+ 1) = f ( c ( i ,  t)) + y ~ ( f ( c ( j ,  t)) - f ( c ( i ,  t))),  (3.3) 
j ~ N  

but other forms are possible. In these equations, yis a matrix of coupling coefficients. 
Even the one-dimensional versions of these equations can yield a wide range of interesting 
dynamical behavior; for example, spatio-temporal versions of period doubling and 
intermittency. These aspects of coupled map lattices will not be recounted here since 
reviews exist [69]; however, in keeping with the topic of this review, the utility of such 
models for the study of pattem formation processes in spatially distributed chemically 
reacting systems will be described. 

Coupled map lattices are dynamical systems in their own right and need not be 
regarded as approximations to other dynamical models like the partial differential equations 
used to model fluid flow or reaction-diffusion systems. However, in some circumstances 
it is clear that a partial differential equation such as the reaction-diffusion equation provides 
a good description of a physical system, and in this case it is useful to attempt to 
reproduce the major features of the solution structure with a simpler discrete model. The 
aim is to construct a discrete model that is in the same "universality class" as the original 
reaction-diffusion equation without slavishly reproducing all details of the dynamics. 
We shall describe such constructions below for several specific types of chemically 
reacting systems. 
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3.1. BISTABLE SYSTEMS 

In contrast to reactions occurring near equilibrium, nonequilibrium chemical systems 
may evolve to more than one stationary state depending on the initial concentrations. 
There are many examples of real systems that show this kind of behavior [70], but 
it is convenient to describe the phenomena with reference to an abstract chemical 
reaction scheme devised by SchRSgl [71]. The SchlOgl reaction consists of the following 
elementary steps: 

k0 kl 
C--~X +B, X +B--~C,  

k2 k3 
2 X + A  ~ 3 X ,  3X ~ 2 X + A .  (3.1.1) 

The macroscopic rate law for the concentration x of the X species is 

dx 
- -  k3 x3 + k2ax 2 - k l  bx + koc, (3.1.2) 

dt 

where a, b and c are the concentrations of A, B and C, reactively.  The system is maintained 
away from equilibrium by fixing the concentrations of A, B and C, so they may be incor- 
porated into the definitions of the rate constants k i. In order to describe the solution 
structure of this equation, it is convenient to scale the time (t --~ kat) and introduce an 
order parameter field O = x - k2a/3k 3 so that the rate law takes the simpler form 

d O _  0 3 + e 0 + # _  dV(0_____)), (3.1.3) 
dt d o 

where 

( k 2 a )  2 k lb  _ ( k 2 a )  3 k lk2ab ko____c 
(3.1.4) 

and V(0 ) is a quartic potential function defined by (3.1.3). The steady states of the 
system are given by the solutions of -03  + e0 + # = 0 so that for certain values of e 
and /z there are three real roots, two of which are temporally stable and the other 
unstable. The solution structure in the e/z-plane is shown in fig. 8, where the physically 
relevant region of bistability is shaded. States along the dashed line within the shaded 
region are equivalent in that they have the same stability, with order parameter values 
differing only by sign, 0= + ~'~ Off this # =  0 line the two coexisting states are inequivalent, 
being characterized by different relaxation rates for perturbations about these states. 

A real chemical system which is well approximated by cubic kinetics for a single 
intermediate species is the iodate-arsenous acid system [72]. While the actual chemical 
mechanism [73] is much more complicated than the SchlOgl mechanism (3.1.1), under 
suitable conditions corresponding to either excess iodate or arsenous acid, the chemical 
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Fig. 8. Bifurcation diagram for the Schlrgl model CML showing tangent 
and subharmonic boundaries with the physically relevant region of bistability 
shaded. The dashed line indicates the critical quench path. The bifurcation 
boundary for the continuous SchlOgl model is the tangent boundary. 

rate law is a cubic polynomial. For example, under conditions of  excess arsenous acid, 
the net reaction is 

IO 3 + 3H3AsO 3 ~ I- + 3H3AsO 4 

and the rate law for the concentration of  the iodide ion x = [I-] is 

d x  
d---t = x ( k a  + kBX) (Yo  - x ) ,  (3 .1 .5)  

where Y0 = [IO310, the initial value of  the iodate ion concentration, while k a and k B are 
effective rate constants that depend on the hydrogen ion concentration. Typical values 
for these parameters may be found in Saul and Showalter [72]. For our purpose, it is 
sufficient to note that with suitable rescaling of  concentration and time variables, (3.1.5) 
can be cast into the form of (3.1.2). However, there are a number of  unusual features. 
For parameter values corresponding to the standard experimental conditions, one of  the 
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steady states of  (3.1.5) is unphysical since it corresponds to negative concentrations. 
Also, experimentally the system may be prepared at the unstable steady state, so a 
number of interesting features associated with evolution from the unstable state may be 
investigated. These include consumption fronts where the chemical medium is converted 
from the unstable state to the stable state [72]. 

The reaction-diffusion equation corresponding to (3.1.3) has the form of the time- 
dependent Ginzburg-Landau (TDGL) equation for a system with a non-conserved order 
parameter field: 

0~b(r, t) = _t~3(r ' t) + e(~(r, t) + # + D V2~b(r, t). (3.1.6) 
0t 

The qualitative features of the dynamics of this equation are well known [74]. Consider 
a "critical quench" where the system parameters are suddenly changed along the line 
# = 0 from those corresponding to point P1 (cf. fig. 8), where the potential V has a single 
minimum at ¢ = 0 to point P2 within the bistable region where V has two minima 
at ¢ = + ~-d separated by a maximum at f = 0. As a result of fluctuations either in the 
dynamics or in the initial state, the system will segregate into domains of the two 
spatially homogeneous stable states. The average order parameter in an infinite system 
will be zero, but the system will generate order on arbitrary length scales. Finite systems 
will evolve to one or the other of the stable states, but the order parameter averaged over 
realizations of the initial state corresponding to small inhomogeneous fluctuations about 
the unstable state will be zero. After an initial stage with complex dynamics during 
which well-defined boundaries between the coexisting stable states are established, the 
longer time evolution of the system is characterized by domain growth with simple 
features. This late stage growth region was discussed by Allen and Cahn [75] and is 
dominated by the dynamics of the curved surfaces separating the domains. IfR(t) is the 
characteristic size of a domain at time t, then the curvature of the domain boundary gives 
rise to a growth law R(t)  ~ t 1/2. It is convenient to quantitatively characterize the non- 
equilibrium dynamics of the system in terms of the correlation function C(r, t) defined 
by 

C(r,  t) = q/-:  j ' d r ' (~ ( r ' ,  t ) ~ ( r +  r ' ,  t)), (3.1.7) 
q/ 

where V is the volume of the system and the angle brackets signify an average over 
realizations of the growth process. For systems with translational invariance, this is a 
function of the scalar distance r. The dynamic structure factor is the Fourier transform 
of the correlation function: 

(k, t) = r jdre ik ,  r C(r ,  t). S (3. 1. 8) 

If one makes the assumption that the only relevant length in the system is the domain 
size and assumes the domain size growth law given above, then the dynamic structure 
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factor satisfies the scaling relation S(k, t) - t F ( k t  ~t2) and thus possesses simple scaling 
properties. 

Off the line St = 0, the states are no longer equivalent and growth occurs by a 
nucleation process. For example, if the system is initially prepared in the less-stable state 
and seeded with nuclei of the more-stable state, then the nuclei will grow provided they 
are larger than some critical size and the system will evolve to the more-stable state. 
In general, the morphology of this growth process differs from that along the critical 
St = 0 line. From the above description of the dynamics, it is clear that the domain 
curvature plays a central role in the dynamics and morphology of the inhomogeneous 
states; thus, it is essential that this feature be correctly described in any discrete model 
for these phenomena. 

The simplest CML results from an Euler-like discretization of the TDGL model. 
Letting z and q be the time and space increments, we have 

~(i,t+ l)=-g)3(i,t)+(e+ l)(2(i,t)+st+ ?~[~?(j,t)-#)(i,t)], (3.1.9) 
Y~N 

where ~ has been scaled as ¢ ~ ,f~@ and t is measured in units of z. The parameters in 
(3.1.9) are related to those in the TDGL equation by the transformations (we use the 
same symbols to avoid proliferation of notation) e --~ "re, # ---> z3m# and )" = D z / q  2. 
Thus, the bifurcation structure can be studied as a function of e, St and ~. It is clear that 
for small enough z and q, the solutions of (3.1.9) approximate those of (3.1.6). However, 
many aspects of the bifurcation structure may be studied with a coarse discretization 
grid. The map model (3.1.9) then consists of a lattice of coupled cubic maps. As such, 
it will generate a much richer bifurcation structure than the original TDGL model [76]. 
However, provided the bifurcation parameters e, # and ),are suitably selected, the coupled 
map lattice will exhibit spatio-temporal phase separation behavior like that of  the reaction- 
diffusion equation. It is simple to study the stability of the homogeneous steady states 
of (3.1.9). These steady states are given by the solutions of - ~  + e~ + St = 0 and are 
identical to those discussed earlier with a suitable reinterpretation of the parameters. 
Temporal stability of these states is most conveniently studied by considering the spatial 
Fourier transform of the linearized version of (3.1.9). Depending on the slope of the 
linearized Fourier transformed map, two sets of  bifurcation boundaries are obtained: for 
slope + 1 there are tangent boundaries, 

• . - -  

while for slope -1  there are subharmonic boundaries, 

h(k)" #=+_[2(1-e)+w(k)][e+ 2+w(k)] l/2 (3.1.11) 

These boundaries are clearly functions of the wave vector k and the diffusive coupling 
strength through w(k), which is defined as 
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w(k) = 4y{cos [Tr(kl + k2)/N] cos [zr(kl - k2)/N] - 1 } ,  (3.1.12) 

for an N x N array of maps on a square lattice with periodic boundary conditions. Here, 
the wave vector k = (k 1, k2). For y> 0, the relevant tangent boundary (that corresponding 
to the most unstable mode) has k = (0, 0) and is just that sketched in fig. 8 for the 
continuous space and time equation (3.1.6). The boundary labeled h(N/2) in this figure 
is the relevant subharmonic boundary for which k = (N/2, N/2). This mode corresponds 
to a "checkerboard" pattem inhomogeneous state and is a feature of the coupled map 
model. Thus, within this bifurcation boundary the phase separation phenomena exhibited 
by the coupled cubic map lattice will mimic those of the TDGL model. Outside this 
boundary, the coupled map lattice displays a variety of secondary bifurcations, giving 
rise to interesting spatio-temporal structures which are different from those of the TDGL 
model but have parallels in real physical phenomena. Such features have been extensively 
studied for coupled quadratic and other maps [69]. Here, however, we focus on the 
spatio-temporal dynamics that are like those of the SchlOgl reaction-diffusion system 
or, more generally, the TDGL model. 

A coupled map simulation of the critical quench can be carded out easily, and 
fig. 9 shows the results of such a calculation. The initial condition corresponding to a 
critical quench was constructed by superimposing small amplitude fluctuations on the 
homogeneous system with order parameter equal to that of the unstable state, 0 = 0. The 
subsequent evolution is deterministic. Sharp domains are established within a few tens 
of time steps, after which the domain growth is govemed by domain wall curvature 
effects. The scaling relations for the dynamic structure factor have been shown to he 
valid for the CML in this long time regime. In addition, a CML model of the iodate- 
arsenous acid system has been constructed to study the one-way evolution from the 
unstable state [77]. The map model simulations suggest a number of features that can 
be experimentally studied since it is easy to prepare the system in the unstable state [72]. 
Thus, the map model can be used to explore a range of phenomena in such systems, and 
these studies may be extended to include nucleation and growth processes where the 
order parameter is conserved [78]. In this latter case, the status of the scaling relations 
is the subject of some controversy which the CML simulations may help to resolve. As 
for the spiral wave curvature effects discussed in section 2, the domain evolution in these 
bistable systems is governed by the curvature of the chemical waves. Hence, it is 
essential that the discrete model correctly describes such effects. The simple cubic CML 
has been demonstrated to do so. 

Before leaving the topic of bistable states, it is interesting to enquire a little more 
deeply into the nature of the interface that separates the domains of stable states in these 
discrete systems, since such interfaces or defects often govern the system dynamics [76]. 
The simplest case to consider is that of a planar interface for which a one-dimensional 
coupled map lattice suffices. The stationary solutions of (3.1.9) for one dimension are 
given by 

- 03 (i)  + er ) ( i )  + # + } , [~ ( i  + 1) + ~ ( i  - 1 ) - 2 ~ ( / ) ]  = 0 ,  ( 3 . 1 . 1 3 )  
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which may be written as a two-dimensional conservative map by letting ~(i) = ~(i - 1): 

~ ( i+  1) =._~-1 [_~3(i ) + e(~(i) + #] + 2~(i) - IF(i), 

~ ( i +  1) = ~O(i). (3 .1 .14)  

The solutions of this two-dimensional mapping give all the stationary inhomogeneous 
solutions of the 1-d coupled map lattice. The solution structure in the # ~-plane for 

= 0 obtained by iterating a random distribution of points in the plane is shown in 
fig. 10. The hy~rbol ic  character of the two temporally stable fixed points ~_+ = + d-e is 

/ 

Fig. 10. Discrete stationary inhomogeneous solution structure obtained 
by iteration of the conservative map (3.1.14). System parameters 
are e=  0.15, # =  0 and "y= 0.15. The solid line is one of the symmetry 
curves for the conservative map (cf. ref. [76]). 

evident from the figure, as is the elliptic character of the temporally unstable fixed point 
at ~O = 0. The conservative mapping (3.1.14) clearly shows regions of regular and chaotic 
behavior typical of nonlinear conservative maps. 

The stationary planar interfacial profile may be discussed in terms of this map. 
Consider an infinite 1-d system (coordinate z) with boundary conditions on the order 
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parameter #(z -* +oo) = ~±. The stationary planar interface of the TDGL model is the 
trajectory of 

D V2 ~O(z) - ~03(z) + eq~(z) = O, (3 .1 .15)  

with the above boundary conditions on ~0(z). The solution is well known and is the usual 
hyperbolic tangent profile [71,79, 80] 

¢(z) = -¢+ tanh ~-~ z , (3 .1 .16)  

and the corresponding trajectory is just the saddle connection between the two h ~ r b o l i c  
fixed points. The saddle connection is destroyed in the coupled map model. Instead, the 
stable Ws ± and unstable Wu ~ manifolds emanating from the $± fixed points intersect in an 
infinite number of points, and the points in the discrete interfacial profile are contained 
in the intersection W + n W~- or W~-n W +. Not all points in these intersection sets 
belong to the stable profile. The closed invariant curves of (3.1.14) have two symmetry 
propenJes: they possess a symmetry with respect to the bisectrix q~= V, and also a symmetry 
with respect to ¢ = -V .  This leads to two discrete orbits connecting the hyperbolic 
points: 

-~0(-i) = ~( i+  1), i >  0 (3 .1 .17)  

and 

- ~ ( - i )  = ¢(i), i > 0, (3 .1 .18)  

where we have assumed that the 1-d lattice sites are labeled from i = - ~  to i = +,,o. The 
intersection points satisfying (3.1.17) and (3.1.18) correspond to alternative intersections 
of the stable and unstable manifolds. The manifolds may be generated numerically 
by iterating a set of points slightly displaced along the eigenvectors corresponding 
to the map linearized about the two hyperbolic fixed points. The corresponding 
eigenvalues are A+ = (1 + e/?') + [e/7(2 + e/?')] 1/2 and the eigenvectors are ~T = (A+, 1), 

- -  ± - -  

where T stands for the transpose. Numerical construction of the manifolds in this way 
yields fig. 11. In this figure, the points corresponding to the two types of  intersections 
are labeled by squares (3.1.17) and crosses (3.1.18). The intersections corresponding 
to (3.1.18) do not lie on the stable interfacial profile. This set of intersection points 
contains the unstable fixed point 4, = 0 so that any small perturbation will cause the 
system to evolve to the set of points given by (3.1.17). The numerically generated 
profile does indeed satisfy (3.1.,17). A similar analysis has been carried out for a 
CML where the order parameter is conserved [81]. The corresponding spatial map 
is four dimensional and new features arise. 

The problem of  the discrete interface has many parallels in other problems in 
physics, like pinning of charge density waves and the commensura te- incommensura te  
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Fig. 11. Stable and unstable manifolds of the hyperbolic fixed points with 
squares and crosses denoting the intersections satisfying (3.1.17) and (3.1.18), 
respectively. The system parameters are e = 0.3, g = 0.0 and 7' = 0.15. 

phase transition, where a similar analysis has been applied [82]. The extension of 
these considerations to two and higher dimensions is an interesting and challenging 
task since the geometry of  the interface may be complicated and the discrete analog 
of curvature effects comes into play. 

The CML corresponding to the TDGL equation was obtained by a simple 
Euler-like discretization and care was used to select the relevant parameter values for 
the study of phase separation. This is not the only way to construct a CML for this 
system. Oono and Purl [83] have described an alternative way to construct a CML 
that is convenient if  attention is restricted to the case # = 0 corresponding to a critical 
quench. Consider (3.1.3) for # = 0; this equation may be directly integrated over an 
arbitrary time interval ~7 to yield the map 

~( t+  1) = [ e v +  ¢2(0(1 - v)]l/2 -= f (~( t ) ) ,  (3.1.19) 
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where v = exp(-2e) ,  t has been measured in units of ~" and 0 has been suitably re- 
scaled. The function f may now be used in (3.2) or (3.3) in order to construct the 
coupled map lattice. The map (3.1.19) has the same fixed points as (3.1.3) and is a 
monotonic function of 0, and thus does not exhibit the subharmonic bifurcation of (3.1.9). 
This type of model has been used to explore phase separation phenomena for both 
conserved and non-conserved order parameter systems [84]. We shall continue the 
discussion of CML models of this type for oscillatory systems below. Both the map 
model (3.1.9) with suitably chosen parameter values and the map model constructed 
from (3.1.19) with (3.2) or (3.3) yield physically accurate descriptions of phase separation 
processes and chemical wave propagation in these types of bistable systems. 

3.2. OSCILLATORY SYSTEMS 

The prototypical equation for the description of the onset of oscillations in a 
spatially distributed medium is the complex Ginzburg-Landau equation for the complex 
order parameter field z(r ,  t) [4,5]: 

0Z (r, t) 
- ( l + i t ~ ) l z ( r , t ) 1 2 z ( r , t ) + e z ( r , t ) + ( l + i f l ) V 2 z ( r , t ) .  (3.2.1) 

0t 

This equation has the same structural form as the TDGL equation (3.1.6) f o r #  = 0 but 
with complex coefficients for the cubic and diffusion terms. Consider the spatially 
homogeneous case for which the diffusive coupling term vanishes. In this case, (3.2.1) 
is equivalent to the pair of  real equations 

dA(t) 
- A3( t )+  cA(t), (3.2.2a) 

dt 

dO(t) 
- t~A 2(t), (3.2.2b) 

dt 

letting Z = A exp i O. For e < 0, the system admits a stable steady-state solution at 
A = 0, while for e > 0 (3.2.2a) admits solutions A = + ~/e, giving rise to oscillations with 
period T O = 2 n:/ore. 

The complex Ginzburg-Landau equation is generic in the sense that any two- 
variable reaction-diffusion equation can be reduced to this normal form in the vicinity 
of  the Hopf bifurcation point. A well-known two-variable model is the Brusselator [85], 
and we shaH devote a considerable amount of space to a description of its dynamics and 
indicate how a Brusselator CML can be constructed. The reduction of  the Brusselator 
(near the Hopf bifurcation point) to the complex Ginzburg-Landau model has been carded 
out explicitly by Kuramoto [5]. The Brusselator reaction mechanism is [85]: 
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kl 
A - * U ,  

k2 
B + U  -* V + D ,  

k3 
2U + V -* 3U, 

k4 
U -* E, (3.2.3)  

with reaction-diffusion equation (in scaled form) 

~u 
3--7 = a - ( b +  1)U+U2V +OxV2U, 

~V 
3t = b u -  u2v + G V2v' (3.2.4)  

where the lower case variables are concentrations corresponding to the upper case 
species. This equation is of course of the form of (1.1) if we let c x = (u, v), where T 
stands for the transpose: 

Oc = R ( c ) + D  • VZc, (3.2.5)  
Ot 

where the specific form of R can be found by comparison with (3.2.4). The spatially 
homogeneous Brusselator possesses a stable steady state at (u, v)  = (a, b/a) for 
b < a 2 + 1 = b* which undergoes a Hopf bifurcation to a globally attracting limit cycle 
for b > b* [86]. Away from this bifurcation point, the Brusselator oscillations take on 
the character of relaxation oscillations, and a new time scale in addition to the period 
of the limit cycle is introduced into the problem. 

Below we describe coupled map lattices that mimic the behavior of both the 
complex Ginzburg-Landau model and the Brusselator in the relaxation oscillation regime, 
and describe how phenomena like phase and amplitude turbulence as well as random 
distributions of spiral waves and target patterns arise in these systems. 

A CML for the complex Ginzburg-Landau equation can be constructed using the 
method [83] outlined in the previous section [87]. Equation (3.2.2a) is identical to (3.1.3) 
f o r #  = 0 with a change of symbols so its time integral is given by (3.1.19): 

A( t+  1) = (e.A (t) 
[ ev+  A2(t)(1 - 7)11/2 " 

(3.2.6)  

Using (3.2.6), eq. (3.2.2b) may be integrated to yield 

O(t+ 1) = O(t)+ ~ In [1 + A ( t ) 2 ( 1 -  v)/ev]. (3.2.7)  
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This pair of equations defines a vector-valued map for the pair of variables (A, 0). 
Alternatively, we may define u = Re(z )  and v = Ira(Z) and let c à  = (u, v) and thus recast 
(3.2.6) and (3.2.7) as a map G(c). The complex Ginzburg-Landau CML may then be 
obtained by letting f ( c )  = G(c) in (3.2) or (3.3) [88]. A map [87] similar to the one 
above has been used to explore the onset of  defect-mediated turbulence in such 
systems [89]. In the sequel, we shall also describe its application to the spatio-temporal 
dynamics in a randomly perturbed oscillatory medium. 

An analogous procedure may be used to construct a CML for the Brusselator, but 
it is somewhat more involved since the reaction-diffusion equation cannot be integrated 
analytically [90]. However, it can easily be integrated numerically and thus it is possible 
to construct a Brusselator CML that behaves, in a gross sense, like the Brusselator 
reaction-diffusion system. More formally, we suppose that the chemical rate law for the 
Brusselator may be integrated over a time interval ~" to yield a map B (c). Measuring time 
in units of v, we have 

t + l  

c(t+ 1) = j" dt 'R (c(t')) = B (c(t)). (3.2.8) 
l 

Using f = B in (3.2) or (3.3) yields the Brusselator CML. In the actual simulations, the 
function B was computed at the start of the calculation by constructing a grid in the phase 
space of (u, v) values and storing the values of B(u, v) in integer form. Thus, a large 
numerical mapping specifies the local updating rule. 

In order to show how such CMLs may be used to study the spatio-temporal 
dynamics of oscillatory media, we describe the results of studies of spatial phase resetting 
and pattern formation in CMLs designed to reproduce the gross features of the Brusselator 
and complex Ginzburg-Landau reaction-diffusion equations. The problems we address 
center around the nature of the response of an oscillatory medium to perturbations 
randomly distributed in space. In particular, we consider the following questions: in the 
regimes where the system is known to be stable to infinitesimal perturbations, can finite 
amplitude perturbations excite the system to new persistent spatio-temporal states? How 
can one design perturbations to elicit particular kinds of responses? 

The above problems may be posed more precisely by specifying the class of initial 
states under consideration. Suppose all nodes of the CML are cycling through their states 
in synchrony. We than apply a perturbation at phase 0 of the oscillation such that a 
random fraction p of the maps is shifted away from the limit cycle state. More specifi- 
cally, let ~(i) be a sequence of independent Boolean random variables with probabilities 
such that P(~ = 1) = p and P(~ = 0) = 1 - p .  Then, if c o is a point on the limit cycle 
corresponding to phase 0 (relative to some arbitrary marker phase), the initial condition 
is defined as 

c(i, O) : c ~ ( i )  + Co(1 -~ ( i ) ) ,  (3.2.9) 

where c A represents a shift off the limit cycle characterized by the magnitude A. Thus, 
the initial states may be characterized by three parameters: the initial phase 0, the local 
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perturbation amplitude A, and the average fraction of the lattice that is perturbed p. Of 
course, average values are computed by averaging over many realizations of the initial 
perturbation process. 

A useful way to attempt to understand the response of such spatially distributed 
systems lies in an examination of the phase transition curves (PTC). Consider a spatially 
homogeneous system with a globally attracting limit cycle. This is the usual context in 
which the PTC is studied [46,91]. Suppose a perturbation with amplitude A is applied 
to the oscillatory system at a phase 0 of its oscillation. The PTC is the plot of  the 
asymptotic new phase 0' versus the phase 0. It is clearly a function of the perturbation 
amplitude A. If A is s m ~ ,  then 0' will vary through 2n: as 0 varies through 2~r; in this 
circumstance, the PTC is called type 1 since its average slope is unity. If A is large, then 
it is possible that 0' will only vary over a subinterval of phases as 0 varies through one 
cycle. In this case, the PTC is type 0 since its average slope is zero. If such a transition 
from type 1 to type 0 behavior occurs as A changes, there must be an amplitude A and 
initial phase 0 where the PTC is undefined. The system will not relax back to the limit 
cycle in this case. This is simply a consequence of topological arguments (nonretraction 
theorem) and has been discussed in detail elsewhere [92]. 

An analogous problem can be formulated for the spatially distributed oscillatory 
medium [93]. Suppose it is known that the spatially homogeneous state is stable to small 
inhomogeneous perturbations. Then, if the system is gently perturbed it will relax back 
to the spatially homogeneous limit cycle state but with a phase shift. Once again, one 
may construct a PTC by plotting the asymptotic new phase versus the initial phase at 
which the stimulus was applied. Of course, the determination of the new phase is much 
more complicated for the spatially distributed system and was carried out in the following 
way [93]: following the perturbation, the state of each node on the lattice was monitored 
at intervals corresponding to the period of the limit cycle. The asymptotic average new 
phase ( 0 ' )  was then determined from a double average over nodes of the lattice and over 
realizations of the perturbation seeding process. 

If the local perturbation strength A is sufficiently strong to give rise to type 0 phase 
resetting, then one might expect interesting behavior as the seeding probability p is varied. 
Forp = 0, clearly we have a trivial type 1 response for the system: the new phase is just 
the initial phase. Type 1 behavior is expected to persist for small p. I fp  = 1, then clearly 
the system is again equivalent to a homogeneous system and by construction will exhibit 
type 0 phase resetting since A has been chosen to elicit this response. In between, the 
spatially distributed system must undergo a transition from type 1 to type 0 phase 
resetting and in analogy to the homogeneous case, one might expect a "singular" response 
for some values or range of values o fp  and 0. This is indeed the case for both the 
complex Ginzburg-Landau and Bmsselator models [88, 90, 93]. 

In the simulations of both models, the local perturbation consisted of a shift of  
the phase point off the limit cycle along the u coordinate: c a = (u + A, v). Figure 12 
shows PTCs for the Brusselator model. Phase transition curves with a similar structure 
have been obtained for the complex Ginzburg-Landau model [88]. In both cases, one 
sees a transition from type 1 to type 0 behavior as a function of p, and a range of values 
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Fig. 12. PTCs for the Brusselator  r eac t ion -d i f fus ion  C M L  model  showing the transition 
from type 1 to type 0 behavior  as the seeding probabili ty is varied for f ixed A. The  system 
parameters  are A = 1.0, B = 3.5, 7 =  1/16, A = 1.0. The  circles are f o r p  = 0.4, the crosses  
for p = 0.45, and the triangles for p = 0.5. 

where the FFC is undefined. For these parameter values, the systems do not relax back 
to the homogeneous limit cycle but irkstead form persistent spatio-temporal patterns. 
The natures of the patterns are, however, different in the two models for the parameter 
ranges studied. In the complex Ginzburg-Landau model where the oscillations are 
harmonic in character, one finds chemical turbulence [5, 87-89] (cf. fig. 13). The nature 
of the chemical turbulence in this model has been the subject of a number of 
studies [5, 87-89] for both ¢1 ,0  and/3 = 0, as is the case for the work described above. 
Simulations, especially using CMLs, are sufficiently easy that many details of statistical 
properties like the average number of defects and their correlations have been computed. 
Also, the regime where the complex Ginzburg-Landau model may be reduced to a 
nonlinear equation for the local phase has been studied. Such local phase reductions were 
first carried out by Ortoleva and Ross [94] and later by Kuramoto [5] and Shivasin- 
sky [95]. The chemical defect-mediated turbulence in the complex Ginzburg-Landau 
model can serve as a paradigm for a class of turbulent states in a wide range of physical 
systems and is a topic under active investigation. For further references, see [96]. In the 
Brusselator where the oscillations are of the relaxation type for a certain range of 
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parameters, one finds a random collection of target patterns and, more typically, pairs 
of  counter rotating spiral waves [90]. Examples of such patterns are shown in fig. 14. 
As the Brusselator parameters are tuned so that the system lies closer to the Hopf 
bifurcation point, the relaxation oscillations become harmonic in character. However, 
even before such a change in character occurs, the persistent random distribution of 
spiral wave pairs like that shown in fig. 12 breaks up and is no longer stable [97]. The 
nature of the break-up of the spiral wave state and the development of the chemical 
turbulent state are interesting topics. Both of the CMLs described above are able to 
reproduce the most robust features of the corresponding reaction-diffusion equations. 
However, it is possible to construct an even simpler CML that exhibits many of the 
qualitative features of the phase resetting dynamics and pattern formation processes 
described and yet is amenable to detailed theoretical analysis [98]. The stability of the 
homogeneous oscillatory state for noisy discrete systems like CMLs and CA has been 
studied by Bennett et al. [99]. These considerations are important for the !nvestigation 
of the true asymptotic dynamics in real (noisy) systems. 

The utility of the CMLs for the study of these problems lies in the fact that the 
phenomena are clearly statistical in character due to the random nature of the initial 
seeding process. Many realizations of the pattern formation process must be carried out 
in order to properly characterize the response. The above studies allow one to understand 
how to characterize the perturbations that give rise to very different types of response. 

With rather different goals in mind, Babloyantz et al. [1130] have carried out a 
series of studies of both the complex Ginzburg- Landau and Brusselator models, as well 
as other models, using an Euler-like discretization of the reaction-diffusion equations. 
Their simulations of these networks of coupled oscillators show interesting properties 
of the chemical wave dynamics in the presence of obstacles, and applications to robotics 
are suggested. Discrete models of oscillatory media analogous to the CML models 
described above have been studied by Hanusse et al. [101]. 

While the above discussion has concentrated on oscillatory media, we note that 
these ideas can of course be extended to treat excitable media as well. Such a study has 
been carried out by Barkley [102] and provides an alternative way to study the problems 
discussed in some detail in section 2. 

Finally, we note that for a class of periodically forced reaction-diffusion equations 
it is possible to construct directly the CML [103]. However, these systems are rather 
exceptional, so we have confined our attention to ordinary reaction-diffusion equations. 

3.3. PIECEWISE LINEAR MODELS 

As an addendum to this section, we briefly describe a class of models for spatial 
pattern formation processes that have been used for a long time. These models attempt 
to mimic the behavior of the reaction- diffusion equation (1.1) by replacing the nonlinear 
chemical kinetics term by a piecewise linear function of the concentration variables. 
Such a reaction model may be incorporated in a discrete space and time setting to yield 
a discrete model for the dynamics. The considerations leading to the abstraction of the 
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chemical kinetics term by a piecewise linear function are analogous to those used to 
construct the CA rules. The hope is that some deeper analysis of  the bifurcation structure 
may be possible and that the results may be generalized. To some extent this is true, but 
is difficult because of  the discontinuities in the derivatives of  the functions and an 
extension to general cases is not trivial, which limits the utility of  this approach. We 
briefly describe two examples of this type of method. 

It is not difficult to construct a simple model that reproduces the general features 
of  the excitable medium automaton [40]. The local excitable dynamics can be modeled 
by the piecewise linear function Fe(c) of the notional concentration variable c. For a model 
with l refractory states R k with numerical values of  - A  k, we may write Fe(c) as 

E 2 = - A  C 1 <-- C < Cm , 

E1 = 1 c2 < c < c ~ ,  

Q = 0  -c3 < c < c 2 ,  

Fe(c) = RI = -A t  -cm < c < ct+2, 
Rt-1 = - A t - 1  CI+ 2 ~ C < CI+ 1 , 

Rl = -A1 c4 < c < c 3 ,  

(3 .3 .1)  

with c n > 0 and c restricted to the interval (-Cm, c,,,). If c 1 < 1 and 0 < A 1 < A 2 < . . .  < A t, 
the system will exhibit excitability with c 2 as the threshold value. Once the system is 
in El, it will pass to E 2 and then cycle through the series of refractory states R k 
(k = l, l - 1 . . . . .  1) before reaching the resting state Q = 0. Of course, this local dynamics 
is highly schematic, as is reflected in the fact that the "concentration" variable can take 
on negative values. The excitable medium dynamics can be described by representing 
the diffusive coupling among local elements by a discrete Laplacian defined on some 
lattice. Thus, the dynamical evolution o f c  at site i at time t, c(i, t), is given by 

d ~ N  ( c ( j , t ) - c ( i , t ) ) ,  c ( i , t+ 1 ) :  Fe ( c ( i , t ) )+  2q-----~ j (3 .3 .2)  

where d measures the diffusion coupling strength and qn is the number of  neighbors of 
site i. 

Greenberg and Hastings [40] have examined the five-state model in 2-d in detail. 
In particular, choosing c m = 1/(1 - d), we have I c(i, t) I < Cm for all i and t if l c(i, O) I < cm. 
Furthermore, if c2/(1 + Ca) < d < u/(1 + u), where 

u = min ( c 5 - c 4 c 4 - c 3 c 3  ) 
"2 ' 2 ' 2 ' l - c l ' c l  , 
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then if c(i, t) is in any region except [ -  c a, c2) its dynamics is independent of the diffusion 
term. Finally, if 

8c2 c3 d 2 
0 <  < d <  

c l - c 2 - c 5  l + c  3 ' 1 - d '  

then if - c  a < c(i, t) < c2 and at least one of its four neighbors is in [Cl' Cm)' then 
c 2 < c(i, t + 1) < c 1, but if no neighbors are in [c 1, Cm), then c(i, t + l )  remains in [ - c  3, c2). 
These conditions are just those described earlier for the excitable medium automaton; 
hence, this five-state piecewise continuous model will just reproduce the behavior of the 
automaton if the parameters are chosen appropriately. However, this model produces 
dynamics which is a sensitive function of the parameters, and changes in pattern dynamics 
that are observed do not necessarily correspond to those observed for analogous parameter 
changes in the underlying reaction-diffusion equation. Therefore, this model has not 
been exploited to a great degree for exploring the dynamics of such sysl~ems. Other 
piecewise-linear models have also been used to model excitable kinetics and to investigate 
various aspects of  chemical wave propagation processes [104, 105]. 

The above example dealt with systems with excitable kinetics where the system 
possesses a stable resting state. Oscillatory systems can show an even richer structure 
of spatio-temporal states, as was seen in section 3.2. Here, we briefly mention a piecewise 
continuous model for such systems that was studied by Oono, Kohmoto and 
Yeung [106]. The essential feature is that the piecewise function Fe(c) for excitable dynamics 
must be replaced by a function Fo that gives rise to oscillatory kinetics. One such simple 
function of this type is [106] 

1 if 3/2 < c, 

Fo (c) = 0 i f l / 2 < c < 3 / 2 ,  

M if c < 1/2. 

(3.3.3) 

I fM ~ Z, M > 1, the system will cycle through three states. The oscillatory medium 
model has a somewhat different structure from that described above for the excitable 
medium. First, the "concentration" at site i at time t is diffusively coupled to that of  its 
neighbors. To this end, a function w is defined as 

ct ~ N  ( c ( j , t ) - c ( i , t ) ) .  (3.3.4) w ( i , t )  = c ( i , t )+  ~ . 
J 

The evolution of the concentration at site i is then given by the updating rule 

c ( i , t +  1) = Fo ( w ( i , t ) ) .  (3.3.5) 

The 1-d version of this system shows a number of different types of spatio-temporal 
patterns. Depending on the two control parameters M and a, one observes either two 
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different types of period-3 states, a turbulent phase, or a soliton-like phase. Some of this 
structure has been correlated with that observed in the Belousov-Zhabotinsky reaction, 
but this model must be regarded as a very schematic representation of the full range of 
behavior of the real chemical system. However, the extensive analytical characterization 
of the model dynamics and properties carded out in ref. [106] provides an example of 
the utility of these simple discrete models. 

4. Lattice gas models 

Lattice gas cellular automata were introduced a number of years ago [107] as a 
model that could be potentially useful for the study of fluid flow turbulence that avoided 
the necessity to solve the Navier-Stokes equation. Roughly, a discrete time dynamics 
on a lattice was constructed, where particles move with discrete velocities from node to 
node. Typically, in order to simplify the dynamics, an exclusion principle is assumed 
whereby no two particles at a given node may have the same velocity. Collisions may 
occur at the nodes which give rise to changes in the particles' velocities. Provided the 
collision rules are such that the microscopic dynamics satisfies mass and momentum 
conservation then, under suitable conditions, the macroscopic velocity field can be 
shown to satisfy a Navier-Stokes equation. So the idea is that if one is interested 
primarily in the dynamics of macroscopic fields then, provided the microscopic dynamics 
satisfies a few basic conditions, its precise nature is unimportant. The implementation 
of the above scheme involves the study of a number of subtle questions, which are 
discussed in detail elsewhere [ 107-111 ], but it has been successful in producing turbulent 
flow patterns like that of real fluids. The purpose of this section is to describe how these 
ideas can be carded over into the domain of chemically reacting systems. 

For a chemically reacting system, one must construct a contrived reactive molecular 
dynamics that preserves the essential features of the real reacting microscopic dynamics. 
In particular, the correct conservation laws and chemical reaction mechanisms must be 
incorporated in the microscopic dynamics if the macroscopic concentration field is to 
satisfy a reaction-diffusion equation. By going to this level of  description, we gain the 
feature that the effects of internal fluctuations on the evolution of the macroscopic 
concentration fields can in principle be studied. At the very least, one has the opportunity 
to design fluctuations at the "molecular" level rather than simply appending random 
force terms to the reaction diffusion or CML models. Below we describe several different 
lattice gas models that have been used to study reactive systems. 

4.1. REACTIVE LATYICE GAS AUTOMATON 

A lattice gas model that corresponds on the macroscopic level to an arbitrary 
polynomial chemical rate law has been constructed [112-114] and will be outlined here. 
The case of a single intermediate chemical species X will be described, but the extension 
to several species can be carried out. The general formulation of the single intermediate 
species case is described at length in ref. [114]. In order to present the idea behind the 
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model in a simpler form, we restrict consideration to a specific reaction scheme, the 
SchlOgl model that has already been described in section 3.1. This also has the advantage 
that we can contrast the lattice gas description with that of the CML for the same 
problem. The reaction mechanism and chemical rate law for the SchlOgl model are given 
in (3.1.1) and (3.1.2), respectively. The goal is to construct a discrete microscopic 
dynamics that is consistent with these kinetics. In qualitative terms, the model is constructed 
in the following way: space and time are discrete and the particles are assumed to move 
with discrete velocities on the lattice. The reaction medium in general consists of  solvent 
molecules as well as reactive species. In the nonequilibrium domain, the concentrations 
of certain chemical species are assumed to be held fixed in order to maintain the system 
out of  equilibrium. For the Schl0gl model, this is the case for the A, B and C species. 
Hence, the time dependence of only one chemical concentration X is of interest. In the 
reactive lattice gas automaton, the dynamics of the solvent molecules and the constrained 
species is not explicitly considered. The nodes of the lattice are assumed to be occupied 
by "ghost" particles whose effect on the X species is to produce elastic collisions as well 
as reactive collisions, in accord with the reaction scheme. Since the dynamics of these 
other species is not explicitly considered, their effects are embodied in a set of rules 
specifying the stochastic dynamics of the X particles at a node. The elastic collisions are 
modeled by random rotations of the particle configuration, while the reactive collisions 
are modeled by a combination of probabilistic rules for the increase or decrease of the 
number of X particles, together with a random rotation to mimic the velocity change that 
will accompany the reactive collision. A mathematical description of this set of  operations 
is easily written. 

The X particles are assumed to move on a square lattice L with periodic boundary 
conditions. At each node of the lattice labeled by a discrete vector r there are four cells 
labeled by an index i that is associated with unit velocity vectors c i along the lattice directions. 
The exclusion principle mentioned above is assumed to apply so that each cell (r, i) can 
be coded by a Boolean variable si(r ), 

1 cell occupied, 

si(r)  = 0 cell unoccupied. 
(4.1.1) 

A configuration of particles at a node at time k may then be described by a random vector 
rl(k, r) that takes on values in the space of all 16 four-bit words. Thus, a configuration 
of the whole lattice at time k is described by the Boolean field 

rl(k) = {r l (k , r )  : r  ~ L } ,  (4.1.2) 

that takes on values in a phase space of all possible assignments 

s( ' )  = ( s ( r )  = (si(r))4i=l : r c L } .  (4.1.3) 
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The evolution of  the system is now embodied in a set of rules that specify how the 
Boolean random fields evolve in time. For the chemically reacting system under consideration, 
one time step in the evolution is accomplished by the product of  three transformations: 
a propagation step P where particles move from node to node, as well as the chemical 
transformation C and rotation R operations described above; their explicit forms will be 
given below. Microdynamical equations that play the role of the equations of motion for 
a classical many-body system can now be written for the random fields rli(k, r). 

The propagation and rotation transformations are easily written. Since each particle 
moves one lattice unit in the direction of its velocity, for the configuration after propagation 
r//P(k, r), we have 

P" rl~(k,r)= r l i ( k -  1 , r - c i ) .  (4 .1 .4)  

The rotation operator R consists of random rotations by + zr/2 of the configuration, so 

R " rl~(k,r)= ~r/2 r/i+3 + ( 1 -  ~r/2)r/i+ 1 , (4 .1.5)  

where 7/R denotes the configuration after rotation and ~,~ is a Boolean random variable 
with probability P(~,rr2 = 0) = P(~rr/a = 1) = 1/2. In (4.1.5), the subscript addition is 
modulo four. 

The chemical transformation step C is a little more complicatcd. At each node of 
the lattice, independent of the others, particles are created or destroyed, giving rise to 
local reactions of the form aX ---)/3X with reaction probabilities Pa# independent of 
their velocity state. Of course, if no reaction occurs we have a =/3  and 

Paa = 1 -  ~ Pa#. (4.1.6) 
ae/3 

There are two elements that are needed to write a formal expression of C: we must specify 
the initial configuration with, say, a particles, and we must ensure that the chemical 
transformation a ~ / 3  occurs with the appropriate probability. Consider a specific example 
where the node contains no particles of species X. The following product of  Boolean 
random variables will ensure that this is the case: 

4 

Q°(r/) = l ~ ( 1  - r/i). 
i=1 

(4 .1 .7)  

Clearly, if there are no particles initially at a node, then the particle number can either 
remain the same or increase from one to four. If we consider the reaction C --> X + B 
in the Schl0gl mechanism (3.1.1), this corresponds to 0 ---> X in the present terminology 
and occurs with probability P01. To code this, we introduce random variables ~/a/3 with 
distributions determined in the following way: we define the product 
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4 4 

N ° 1 = ~ i l - I ( 1 - ~ ° l )  I ~  I ~  ( 1 - ~ ° ~ )  , (4.1.8)  
] ~ 1  -re R(01) m = l  

where R ( a )  is the set of all allowed reactions for each a. Then, if f l e  R ( a )  we define 
R ( a f l )  = R ( a )  - {fl}. The first factor of ~ol ensures that if the reaction produces a 
particle at i, then another will not be created in the other velocity directions, while the 
second factor ensures that the other reactions that are possible from an initial state with 
a particles do not take place. The probability distribution for y01 is 

P r ( Y  01= 1 ) = P o l / 4 ,  P r ( y ° l = O )  = l - P 0 1 / 4 ,  (4.1.9)  

where the factor 4 comes from the fact that there are four distinct outcomes of the 
reaction since the particle can be created in any of the four velocity states. The overall 
contribution of this reaction t y ~  to the value of 7"/i after the chemical transformation step 
7? c is 

Q°(r/) y°1. (4 .1 .10)  

The full expression for 7/c follows from a sum over all possible reaction types and is 
given in ref. [ 114]. 

The microdynamical equations of motion for the automaton are now easily written 
as 

r h ( k , r ) = ~ T r / z r l C + 3 ( k - l , r - c i ) + ( 1 - ~ / z ) r l c i + l ( k - l , r - c i ) .  (4 .1 .11)  

This equation can serve as the basis of a discussion of the dynamics of the automaton 
and the consideration of various kinetic and macroscopic equation limits of the full 
dynamics. In particular, if one assumes that one may factor averages of products of the 
random variables and considers a spatially homogeneous system in equilibrium in velocity 
space, (4.1.11) reduces to the chemical rate law 

dp(t) 3 dt - 1¢° - ~;1 p( t )  + g /('2 p2(t) - l / ¢ 3  p3(t) + 1 2 - ~  g'4 P 4(t)" (4 .1 .12)  

An interesting feature of this construction (and the passage from microscopic to 
macroscopic descriptions in general) is that there are many (an infinite number of) 
microscopic CA models that give rise to the same macroscopic law. There are twenty 
independent elementary reaction probabilities Pat3 but only five independent macro- 
scopic rate coefficients K" n. Thus, the same rate law may be obtained from different 
microscopic models even when one eliminates elementary reactions that do not appear 
in a particular mechanism. For example, in the SchlOgl model there are only eight 
elementary reactions (reverse reactions included), but this is still larger than the number 
of rate coefficients. In general, each microscopic CA model will give rise to different 
internal fluctuations and hence possibly different macroscopic behavior. 



156 R. Kapral, Discrete models for chemically reacting systems 

0 

.~ c5 

U 

ii c5 

z 



R. Kapral, Discrete models for chemically reacting systems 157 

Simulations have been carried out on one version of the SchlOgl model. The 
results show that the CA model is able to reproduce the phase separation dynamics that 
is expected if the system is in the (deterministic) bistable region and is initially prepared 
in the unstable state. The results of such simulations are shown in fig. 15 and may be 
compared with those of fig. 9 for the CML for this system. Clearly, the qualitative 
structure of the domain formation is the same in the late stages of the growth. Detailed 
properties of the domain growth for the LGCA remain to be investigated. 

4.2. TURBULENT REACq'IVE FLOWS 

The study of turbulent reactive flows requires the inclusion of the dynamics of 
the fluid velocity field in the macroscopic description. As is well known [107], the 
choice of lattice is crucial for LGCA models of the Navier-Stokes equations in order 
that isotropy of the stress tensor may be maintained. Simulations in two space dimensions 
must be carried out on a triangular lattice and 3-d simulations on a 4-d hypercubic lattice 
in order to preserve such isotropy to second order in the Mach number. For reactive 
turbulent flows, one must deal simultaneously with the complexities that arise from 
chemical reactions as well as those related to the correct description of the fluid flow 
field. 

Since in the general case the investigation of chemically reacting flows entails the 
study of multi-component fluids, additional difficulties conceming the Galilean invariance 
of the macroscopic equations derived from the LGCA arise. The macroscopic equations 
derived from the LGCA take the form [115] 

~p 
~ t  + v . ( p u )  = o ,  (4.2. la) 

Opu 
~----[- + V . ( g p u u ) = - V p +  v V Z ( p u ) +  Vb V ( V .  (pu) ) ,  (4.2. lb) 

OP~ ~---[- + V . (pau)  = D V 2 p a ,  (4.2.1c) 

where Pa is the average concentration per site of species a, p is the total density, u is 
the average velocity field, v is the kinematic shear viscosity, v b is the kinematic bulk 
viscosity, and p is the pressure field. Due to the presence of the density-dependent 
factor g, these equations are not Galilean invariant. For a one-component incompressible 
fluid the Navier-Stokes equations are recovered if time, pressure and viscosity are 
scaled. However, since g is not present in the equation for the species densities, such 
scaling cannot reduce the multi-component equations to the normal hydrodynamic form. 

In spite of these difficulties, there have appeared LGCA models for special examples 
of turbulent reactive flows. Calvin et al. and Zehnle and Searby [116] have simulated 
a simple reaction A + B -¢  2C in a turbulent fluid flow. In their model, two binary bits 
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are used for each of the six velocity directions on the triangular lattice. These four two- 
bit words are used to code the four possible states of a lattice gas cell: { 0, A, B, C }, where 
0 is the empty cell and A, B and C label cells occupied by the respective chemical species. 
Thus, there are twelve binary bits to code the moving particles. In addition, the model 
allows for the presence of from zero to three fixed particles per site, and four additional 
bits are used to code for the presence of these rest particles. The existence of rest 
particles is crucial since with suitable dynamics (see ref. [116] for full details of  the CA 
role), one can construct a model with pseudo Galilean invafiance where g(p) is a maximum. 

The simulations of this model show interesting structure. In order to study a 
reactive shear layer that develops a Kelvin- Helmholtz instability, a 2-d box of 1024 × 512 
sites was filled in the upper half with A particles and in the lower half with B particles, 
with equal and opposite velocities. The irreversible reaction A + B --4 2C occurs at the 
interface. For the given conditions, the reaction does not couple to the fluid flow field, 
but the development of an instability at the interface has a marked effect on the reaction 
rate, which deviates substantially from the predictions of a simple diffusion controlled 
reaction rate model [116]. 

LGCA models show considerable promise for the study of a variety of problems 
involving chemical reactions in fluids. For instance, they can be used to explore the 
chemical wave propagation processes described in sections 2 and 3. Since fluctuations 
are incorporated, these models can complement Langevin equation and other stochastic 
model studies of bifurcations and chemical wave dynamics [117, 118]. The development 
of LGCA is still at a very early stage and the above description simply provides a few 
examples and possible formulations of such models. 

5. Conclusions 

The validity of the discrete models described here relies on the assumption (verified 
in some instances) that one can do quite a bit of violence to the dynamics of the system 
and yet obtain reasonable results. Stated in other terms, if the basic elements of a 
mechanism or microscopic process are understood and incorporated in the construction 
of discrete models, the gross aspects of the spatio-temporal structure should also follow 
from the model dynamics. Thus, discrete models are attractive from two points of  view. 
First, for the trivial but important reason that they are usually orders of magnitude more 
computationally efficient than direct solutions of the reaction-diffusion equations. Second, 
when one has successfully built such a model, one can be reasonably certain that the 
essence of a mechanism for the evolution is understood. Hence, one has accomplished 
one of the usual goals of  science, namely, the abstraction of a complex physical process 
in a simple model. 

It is worth mentioning that. a number of related models have been intentionally 
omitted from this review. There is a body of literature dealing with birth-death master 
equation descriptions of the dynamics of spatially distributed systems [86, 119]. Such 
models have been used to explore fluctuation effects on the bifurcation structure in 
reaction-diffusion systems. There has recently been a considerable amount of research 



R. Kapral, Discrete models for chemically reacting systents 159 

on discrete reaction-diffusion models, such as interacting particle systems [120] and 
reactive r~dom walk models on regular and fractal lattices, which have been used to 
explore the validity of macroscopic rate laws [121]. Depending on the dimertsion and 
reaction mechanism, a phenomenological description of the rate process may no longer 
apply. The LGCA models described in section 4 can also be used to examine these 
questions at a level of description that includes particle velocities as well as numbers. 

Discrete models provide a simple way to describe complex processes. It is interesting 
to see how complex dynamics can follow from a simple and apparently trivial rule. It 
is equally interesting to see that a seemingly complex spatio-temporal structure may have 
a simple physical mad mathematical basis. It seems clear that such models will occupy 
a promincnt place in the study of complex chemical systems. 
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